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Abstract

Well-known manifestations of quantum effects in
accelerators are related to the quantum fluctuations of
synchrotron radiation and the spin polarisation. There
are more possibilities to see quantum mechanics
signatures in accelerators. It is shown that Bell's
inequalities for nonidentical particles, as well as the
wave function localisation due to measurement, could be
tested with conventional accelerator components and
techniques.

1 INTRODUCTION
This work was motivated by papers of Vinokurov and his
colleagues [1]. They presented studies of one electron
trajectories in a storage ring in presence of strong
synchrotron radiation, and confirmed the randomness of
its motion.  The experiments showed that the electron
wave function didn't spread out over the ring but,
instead, its the localisation is fairly good  and "the
possible cause of the localisation is the interaction with
the radiation field, which acts like a continuos
measurement". Thus, the nontrivial question is how and
when the localisation occurs and is it related to the
measurement (or equivalent) process. In even simpler
words, when the electron radiate, when does its
entanglement with the photon break?
    The quantum mechanical behaviour of particles could
be perfectly demonstrated by interference pattern,
appearing when particles pass through a double-slit and
detected at the screen behind it.  For two particles,
having correlated spins (or other variables), there exist
another exceptional possibility to measure, if the particle
wave functions are coupled (entangled) to each other.  In
70th John Bell [2] presented a scheme for polarisation
measurement for two particles, which gives different
results for some correlation function (S) of particle spins,
if measured on various axes, in case when two particle
spins are entangled or independent. The function S, as
well as three related examples, is described in appendix.
The paper deals with the simple set-up to check the
entanglement of the photons and to check if the process
of conversion of polarised photon into a polarised
electron breaks the entanglement.

2 IS SUPERLUMINAL
COMMUNICATION POSSIBLE?

In order to show what type of experiments could be done
with entangled photons, we present an experimental
scheme that deals with possibility to transmit signals
faster than the speed of light.
       Let's take the source of entangled photons, moving
in opposite directions, having equal  (entangled or
coupled to each other) polarisation. For every photon
wave function consists of combination of parallel and
perpendicular polarisation, with the wave function ψ

|||| 2,12,1 +∝ ⊥⊥ψ ,   (1)

where symbols ⊥ and || mean perpendicular and parallel
polarisation with respect to some axis.1 One can see that
this wave function can not be factorised and the photons
in this state are called entangled photons. The
remarkable feature of this state is that if one photon
polarisation is measured to be equal to some value (e.g.
angle in radians with respect to some axis), the opposite
photon instantly has the same polarisation.
    Figure 1 shows the simplest experimental set-up with
the future experimental outcome to be a puzzle from
theoretical point of view. The scheme consists of two
parts.
    The right part is just polarisation measurement
scheme, which consists of polarisation splitter cube and
two Photo Multipliers (PMT's) to count the photons, and
the switch, which either deflects the beam from the cube
or directs the beam into it. We assume that the deflected
beam is travelling without measurement. But if the
photon passes through the cube, its polarisation is
measured with 100% efficiency.
      The left part is an interferometer (the principal
scheme is taken from 3). The photon in state (1),
travelling left, is splitted in the cube with parallel
polarisation transmitted through it and perpendicular
reflected down. We assume that the reflection in half-
transparent mirror shifts the phase of the light to quarter
of oscillation, the regular mirrors and polarisation
splitter for the perpendicular polarisation change the
oscillation phase to half, and each direct passing of light
through them leaves the phase unchanged. In addition,
we assume that the phase shifter below the cube shifts the
oscillation phase to -π/2. Parallel polarisation is
transformed into perpendicular after the upper left mirror

                                                       
1 Therefore the polarisation of every photon, if measured
separately, is equal for any axis



in order to have interference pattern for both photon
paths. It easy to calculate the phase difference for both
photon paths and find that, if the photon polarisation is
not measured at the right shoulder of the set-up, the
Photo Multiplier A (PMT A in the scheme) has zero
phase difference between two photon paths2. Thus it has
nonzero signal, while the PMT B has π phase advance
and no signal.
    The described above scheme gives interference if the
photon is not measured in the right side PMT's. If it is
not deflected by a fast switch and its polarisation is
measured, it automatically travels through one path
(which correlates with the results of the measurements on
the right), and both PMT A and PMT B have statistically
equal signals. Thus if the collapse of two photon wave
function is instant, we can transmit signals faster than
the speed of light at the statistical level.
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Figure 1 Experimental set-up with
interference pattern to disappear at the left if
the polarization measured at the right.

3 DOES THE CATHODE BREAK THE
ENTANGLEMENT?

Let's take the source of entangled photons similar to the
described in Section 1. Figure 2 shows proposed
experimental set-up to measure if the absorption of the
photon and related to it emission of the electron breaks
the entanglement with another photon. If taken without
the cathode, the set-up resembles one use by Alain
Aspect and his colleagues [4]. The entangled photons
after splitting in polarimeter cubes are measured by
photomultipliers (PMT) at the left and converted to
polarised electrons at the right, which are measured by

                                                       
2 The upper left path has reflection-related phase shift in PMT
A equal to π (due to the upper left mirror) + π/2 (due to the
half-transparent mirror) = 3π/2. The lower path has the phase
shift π(due to the cube)-π/2 (due to the phase shifter)+ π(due to
the mirror)=3π/2, therefore the phase shifts are equal. Similar
calculation gives π phase difference between two paths and,
therefore, no signal in PMT B.

Mott polarimeter Microchannel Plates (MCPs). Cube I
directs different polarisations into two photon channels.
These photons are transformed into circular photons and
produce electrons with longitudinal polarisations
(forward or backward, depending on the polarisation of
the incident photons). The spin rotator converts the
longitudinal polarisation into a transverse one. Therefore
measured electron spin "up" corresponds to the photon
with the parallel polarisation, and spins "down" - to the
perpendicular polarisation.

Figure 2 Proposed experimental setup. Two
polarimeters I, in orientation a, and II, in
orientation b, split the first photon to produce
polarized electrons (at the left part) and to
direct the second one to two photomultipliers
(at the right side). Each polarimeter is
rotatable around the axis of the beam.

4   POSSIBLE SCHEME TO CHECK THE
EQUIVALENCE BETWEEN

RADIATION AND MEASUREMENT
Finally, we come to the questions of paper [1]. The
studies, presented in it, show one-electron trajectory in a
storage ring in presence of strong synchrotron radiation.
The experiments showed that the electron wave function
didn't spread out over the ring but, instead, its the
localisation is fairly good and "the possible cause of the
localisation is the interaction with the radiation field,
which acts like a continuos measurement". Thus, the
nontrivial question is how and when the localisation
occurs and is it related to the measurement (or
equivalent) process. Or, in reformulated form, when the
electron radiate, when does its entanglement with the
photon break?
    It turns out to be that there exists already optical
scheme for accelerators (namely, ATF in KEK, Japan) to
measure sizes of the electron beam with the
interferogram [5]. Figure 3 shows the rough scheme of
the experiment.
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Figure 3 Principal scheme of the SR
experiment

   The circles at the Figure 3 show two consecutive
positions of an electron. It radiates synchrotron radiation
into angle 1/γ. The double slit is placed perpendicularly
to the Synchrotron Radiation (SR) light. Light Beam I
and Light Beam II represent two different situations.
Beam I corresponds to the situation when the SR light
breaks away from the electron at the short distance (the
act equivalent to measurement happened). The width at
the figure is 1/γ as if the act of radiation occurred
instantly.  If the width of the beam is less than the
distance D between the slits, the interference pattern is
absent. Beam II represents the classical situation when
the radiation field is running along with the electron. In
this case both slits see approximately the same intensity
(at the same time, because the electron is ultrarelativistic
and its trajectory is perpendicular to the slits) and
produce the interferogram.
    Paper [4] has presented the results for the visibility
versus the distance D between slits. Roughly, the
interferogram disappears when this distance is about 30
mm. The authors relate this fact to the horizontal beam
size, which was calculated to be equal to 39 µm.
   These number impose some limitations on the length
when the photon become independent of the electron.
First of all, if the process of radiation happens instantly,
the size of the light spot would be about L/γ≈2mm (for R
≈ 6m, L≈7m, γ≈3000). Since the interferogram disappear
for much larger distances (30 mm), this possibility is
ruled out. If we assume that the beam actual size is much
smaller than 39 µm, and the interference pattern
disappear because of the photon becomes independent
and its entanglement with the electron breaks, the
distance of this ("measurement-like") wave function
localisation process is about 30 mm. This could be
regarded as the lower limit for the "measurement"
distance for the ATF set of parameters.
     We think that it is of a great interest to combine both
[1] and [4] experiments, to measure the distance of the
photon localisation process, the "size" of one electron,
etc.

CONCLUSION
Three schemes to check when the quantum measurement
happens are presented. All look realisable with modern
accelerators or their components.
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APPENDIX
The Bell's inequalities apply to various types of
problems. We follow Ref.[6] to present general
formulation for the inequalities, and then, three examples
for photons in various states. We deal with correlation
for variables of two particles, for example, with equal
(but not necessarily definite) polarisation, for the first
photon to be polarised on axis with the angle a and for
another photon, to have polarisation with the angle b.
The statistical correlation function is denoted as P(a,b).
The second conceptual definition is one for the hidden
variables. According to the Einstein locality principle,
the certain event (e.g., one of the photons polarisation is
measured to be equal to a) occurs with probability,
calculated in simple way as a sum of possible events (or
paths of integration) λ, with the density ρ(λ). The
dichotomic variable, which takes the values only ±1(+1
when the variable, for example polarisation angle of the
photon, equal to a, and -1 when the polarisation is
perpendicular to a) in the case of event λ is denoted as
A(a, λ),   and  for the second particle  - B(b, λ). The
correlation function for two particles to have a and b
variables, is just multiplication of A(a,λ) and B(b,λ) (as
for the independent events) with the integration of the
result over all the λ with the density ρ(λ).  Let's a, b, c
… be the adjustable apparatus parameters (e.g., axes of
polarimeters). Let's look at the following inequality:
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The inequality is just a consequence of the fact that the
sum of modulus is larger than modulus of the sum. Since
|A(a,λ)|=1, the R.H.S. of the previous equation could be
transformed in the following way:
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Similar mathematics could be used to show that
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Because |B(b,λ)|= |B(b,λ)|=1, we have:
2|),(),(||),(),(| =++− λλλλ cBbBcBbB .   (3a)

Using this and adding (2a) and (3a), we have:

|P(a,b)-P(a,c)|+| P(d,b)+P(d,c), |≤ 2. The
consequence of this inequality is also the following
inequality:

-2 ≤ P(a,b)-P(a,c)+P(d,b)+P(d,c) ≤ 2.   (4a)
It will be referred to as Bell's inequality. The surprising
result that Bell obtained was that the quantum
mechanical calculations violate the inequality.
      To show the example, we denote
P(a,b)-P(a,c)+P(d,b)+P(d,c) as S with respective
subscripts (and we call S a Bell's function).
Let's examine three cases to see the difference between
quantum mechanical predictions and the above
inequalities. Let's take angles a,b,c,d equal to a=θ,
b=z+θ, c=2z+θ, d=3z+θ and scan the inequalities
versus the parameter z. Three cases for testing are chosen
to be:
1) S1- calculations for the zero angle both photon
polarisation (θ=0);
2) S2 - calculations for equal but decoupled photon
polarisation (uniform distribution over θ);
3) Q - quantum mechanical prediction for the photon
state 1/sqrt(2)(parallel + perpendicular).

P(x,y)=w(x+,y+)- w(x+,y-)- w(x-,y+)+w(x-,y-),   (5a)
for any axes x,y, where w functions stands for probability,
+ and - signs stand for the case when photon has parallel
and perpendicular polarisation on the chosen axis,
respectively. For the first case, when the photons
polarisation angle is equal to zero, for arbitrary axes x,y
we have:
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Using (5a) one can get S1 (see formula (4a)) for the first
case.  For the second case for arbitrary axes x,y we have:
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    (7a)

The integration over  θ is just consequence of the
uniform distribution of the initial state over the angle.
One can get S2 easily from (5a) and (8a). The last one is
quantum mechanical case, when the expression under the
integrals are not just multiplication of independent
probabilities as functions of x and y. The polarisation of
the second photon now depends on what axis the first
photon was measured, therefore the  second photon
polarisation depends on the difference of angles x and y.
The probabilities are:
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Again, using (5a) and (7a) one can get Q. Figure 1a
shows all three functions S1 (red solid line), S2 (blue
dotted line), and Q (green dashed line) as functions of
the relative angle z between axes a, b, c, d.  One can see
that the quantum mechanics prediction for two entangled
photons (Q as a function of the relative angle z) violates
Bells inequalities. The strongest violation occurs for 22.5
angle (and combinations of this angle with the integer
numbers of ninety degree angle), where Q=2√2. Another
method to calculate the quantum mechanical case, more
formal and scientific, could be found, for example, in [7].
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Figure 1a Bell's function versus the relative
angle of the polarimeter axes. The red and

the blue lines represent independent photons,
the green one - two entangled photons.
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